

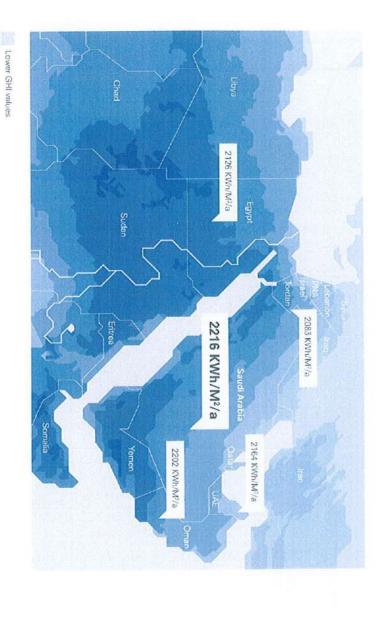
Prince Sultan University Solar PV Project

Riyadh, Saudi Arabia January 2019

There are 3 factors which together make a strong case for using solar in Saudi Arabia

Abundant solar resource

Alignment of energy usage

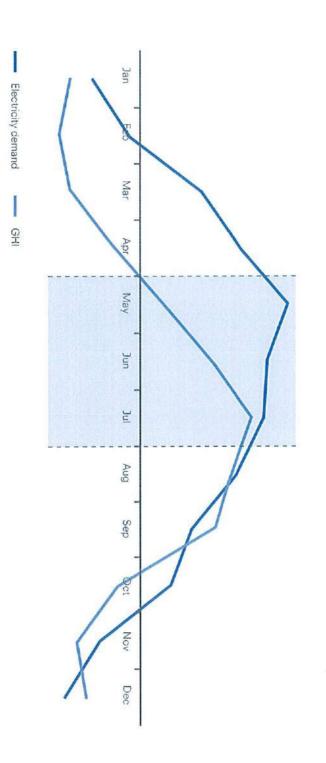

Cost effectiveness

Abundance of Solar Resource

Average global horizontal irradiation (GHI) across key regional markets

Source: Solar GIS

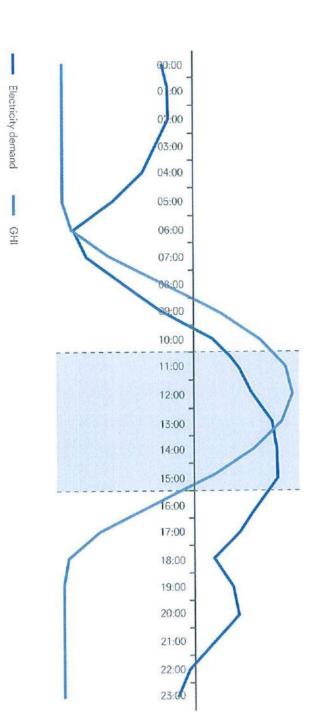
Higher GHI values


2216	Saudi Arabia
1659	Spain
1632	Portugal
1066	Germany
972	K
Average GHI KWh/m²/yr	Country

Alignment of Energy Usage I

Seasonal electricity demand and GHI profiles, indicative

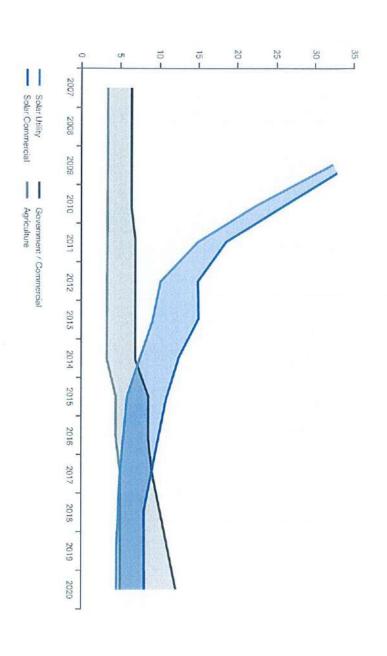
Source: ECRA, OST, SolarGIS



Alignment of Energy Usage II

Daily electricity demand and GHI profiles, indicative

Source: ECRA, OST, SolarGIS



Cost Effectiveness

Levelized cost of solar PV vs Saudi electricity tariffs, USD cents

Source: Lazard, SEC

Technical

Geographical

- Solar Photovoltaics (PV)

Energy Storage

- Hybrid Systems / Microgrids

- Saudi Arabia
- Other Gulf Countries (UAE, Qatar, Kuwait, Oman)
- Wider MENA Region (Jordan, Egypt, Algeria, Tunisia)

the commercial and industrial scale HAALA Energy develops turnkey solar PV peak-shaving solutions to reduce and control energy costs at

Analysis

Engineering & Design

Procurement

Management Construction

Maintenance Operation &

The Solar PV Value Chain

Raw Materials

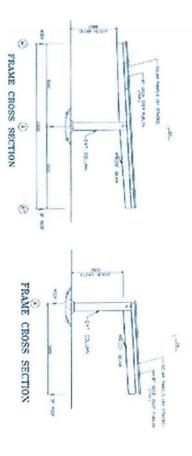
Material Processing

Manufacturing

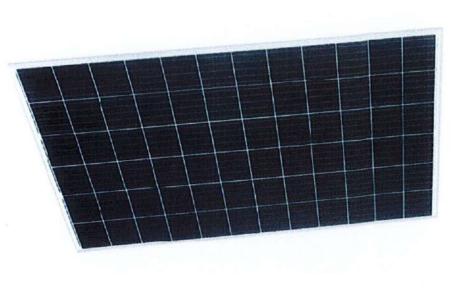
Finance	Analysis	System Design	Installation	Logistics
≎e				

Customers

- HAALA Energy was initially engaged in November 2017
- We studied the potential for developing Solar PV to power building 5 on the PSU campus
- Various potential sites were studied including the rooftops of buildings 1 to 5 and the campus parking areas
- The car-port solutions were most attractive because they offered the lowest installation and maintenance costs



- Given the cost-effectiveness of the car-port sections, Dr. Khaled requested some additional car-port options
- In December 2017 we provided two additional car-port options:
- Option 2, same capacity as the original proposal but car-ports only
- Option 3, a larger car-port system sized according to the limit of the net-metering regulation


- In September 2018 we updated our proposal based on the latest component pricing and a review of all previous options
- The latest proposal consists of two options:
- **Option A**, intended to provide most of the energy required in building 5 during the day at a reasonable cost, without impacting future development plans
- Option B, intended to provide as much power as possible to the campus at the best possible price, while staying within the net-metering limit

1.49 \$/Wp	3,568 MWh	1,810	1.97 MWp	Option B
1.60 \$/Wp	1,526 MWh	1,794	0.85 MWp	Option A
Cost	Annual Yield	Specific Yield (kWh/kWp)	DC Capacity	

Building Your Trust in Solar Jinko Cheetah Mono PERC 72 380 Watt

KEY FEATURES

5 bustar solar cell adopts new technology to improve the efficiency of modules, offers a better aesthetic appearance, making it perfect for rooftop installation. 5 Busbar Solar Cell

High Efficiency

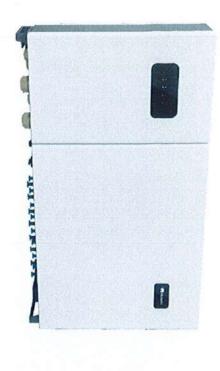
Higher module conversion efficiency (up to 19,67%) benefit from Passivated Emmilier Rear Contact (PERC) technology.

PID Resistance

Excellent Anti-PID performance guarantee limited power degradation for mass production.

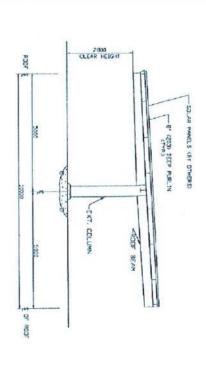
Advanced glass and surface texturing allow for excellent performance in low-light environment.

Low-light Performance:


Severe Weather Resilience Certified to withstand: wind load (2400 Pascal) and snow load (5400 Pascal)

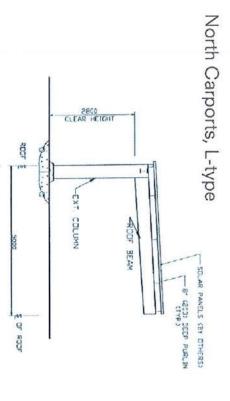
Durability Against Extreme Environmental Conditions

High salt mist and arranonia resistance certified by TUV NORD.



SUN2000-50KTL by Huawei

- String inverters optimize cost vs system resilience
- 8 string intelligent monitoring
- High efficiency inverter
- Natural cooling technology, no external fans
- IP65 weatherproof rating
- Extended 10 year warranty
- Largest manufacturer of string inverters worldwide



South Carports, T-type

Single & Double Cantilever Carport System

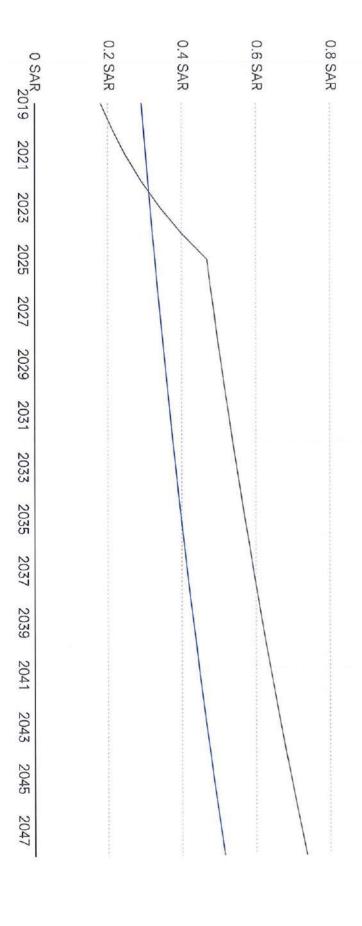
- Optimized panel layout to maximize capacity
- 5 Degree tilt angle to increase energy generation and allow for improved airflow beneath modules

	Option A	Option B
SAR	1,340,150	2,977,200
SAR	1,705,600	3,849,750
	1,144,850	2,289,750
SAR	362,550	775,100
SAR	565,350	1,130,700
SAR	5,118,500	11,022,500
\$/Wp	1.60	1.49
	olar cable etc) SAR AC cabling, panel boards etc) SAR SAR Ises SAR SAR SAR SAR SAR	

System Price Breakdown		Option A	Option B
Solar PV Materials (modules, inverters, solar cable etc)	SAR	1,340,150	2,977,200
nce of System (mounting structures, AC cabling, pan	SAR	1,705,600	3,849,750
Construction, Testing & Commissioning	SAR	1,144,850	2,289,750
Consultants, Logistics & Other Expenses	SAR	362,550	775,100
HAALA Staff Costs, Overheads & Margin	SAR	565,350	1,130,700
Total	SAR	5,118,500	11,022,500
\$/Wp price for comparison	\$/Wp	1.60	1.49
 1 year of operation and maintenance included - Option to extend operation and maintenance to 5 years 	SAR	150,000	300,000
Estimated cleaning costs, using client's in-house staff	SAR	30,000 / year	75,000 / year
Estimated inverter overhaul cost, c. year 15	SAR	125,000	250,000

Return on Investment

Key Financial Metrics		Option A (0.85MWp)	Option B (1.97 MWp)
CAPEX		5,118,500	11,022,500
OPEX		80,000	175,000
System Lifetime		30 Years	30 Years
Annual savings (average in first 5 years)	SAR	308,735	730,498
Total Savings (net)	SAR	13,322,109	32,549,162
IRR		9.21%	10.09%
NPV (5% discount rate)	SAR	3,410,808	9,133,637


Return on Investment

Key Financial Metrics		Option A (0.85MWp)	Option B (1.97 MWp)
CAPEX	SAR	5,118,500	11,022,500
OPEX	SAR	80,000	175,000
System Lifetime		30 Years	30 Years
Annual savings (average in first 5 years)	SAR	308,735	730,498
vings (net)	SAR	13,322,109	32,549,162
IRR		9.21%	10.09%
NPV (5% discount rate)	SAR	3,410,808	9,133,637
Levelized Cost of Energy (LCOE)			
Current (SEC)	SAR / kWh	0.18	0.18
Projected (SEC 30 year average)	SAR / kWh	0.52	0.52
Solar PV SAF	SAR / kWh	0.20	0.18

- It may be possible to finance the project with third-party investors and operate under a lease agreement. PSU would buy the energy generated, rather than the system
 - Zero Capex requirement
- Tariff would be higher than today's SEC tariff, but likely lower than future SEC rates

Upfront vs Financed Solution (Option B)

Key Financial Metrics		Option A Upfront	Option B Upfront	Financed
CAPEX	SAR	5,118,500	11,022,500	,
OPEX	SAR	80,000	175,000	1,035,000
System Lifetime		30 Years	30 Years	30 Years
Annual savings (average in first 5 years)	SAR	308,735	730,498	(170,715)
Total Savings (net)	SAR	13,322,109	32,549,162	12,952,553
IRR		9.21%	10.09%	ı
NPV (5% discount rate)	SAR	3,410,808	9,133,637	
Levelized Cost of Energy (LCOE)				
Current (SEC)	SAR / kWh	0.18	0.18	0.18
Projected (SEC 30 year average)	SAR / kWh	0.52	0.52	0.52
Solar PV	SAR / kWh	0.20	0.18	0.29